

Riparian vegetation modelling for the assessment of environmental flow regimes and climate change impacts within the WFD (RIPFLOW): **Project description**

Technical University of Valencia

Instituto Superior de Agronomia Universidade Técnica de Lisboa **Technical University of Lisbon**

Umweltbüro Klagenfurt

RIPFLOW PROJECT: IWRM-Net MID-TERM EVENT 11/02/09

- Technical University of Valencia (Spain)
 - Research Institute of Water Engineering and Environment: <u>Félix Francés</u> (coordinator)
 - Research Institute for Integrated Management of Coastal Zones: Francisco Martínez-Capel
- Tecnical University of Lisbon (Portugal)
 Instituto Superior de Agronomia: Teresa Ferreira
 Instituto Superior Técnico: António Pinheiro
- Umweltbüro Klagenfurt (Austria): Gregory Egger

Development of a dynamic riparian vegetation model

Development of the model itself

- Implementation of the assessment of the ecological status in WFD sense
- Creation of the software
- Cost-effective methods for the data acquisition

- Development of a dynamic riparian vegetation model
- Application to case studies
 - Calibrate and validate the model
 - Exploitation in national context: incorporate results in River Basin Plans
 - Exploitation in European context:
 - Identify scientific based guidelines for impact assessment
 - Identify good practices in water management for improvement ecological status

- Focused project
- Three research bids in the topic: "Hydrological and morphological pressures and impacts on ecological status"
 - Deliver techniques to understand and manage the impacts of altered hydrology
 - Development of tools/methodologies to asses the "ecological flow regime" of rivers
 - Deliver tools that support decision-making and policy development in extreme events

- WP 1: Project coordination (1-24 months)
- WP 2: Generating scenarios (1-8 months)
- WP 3: Development of RIPFLOW model (4-14 months)
- WP 4: Field data acquisition and processing (8-14 m.)
- WP 5: Model application

to case studies (15-24 m.)

Estimated person months per work package											
	Partner 1 (UPV)	Partner 2 (eb&p Umweltbüro)	Partner 3 (UTL)								
WP 1	5	3	3								
WP 2	10	5	7								
WP 3	15	10	1								
WP 4	12	1	8								
WP 5	12	8	12								
Total	54	27	31								

- T2.1- Management organization & decision making
 - Consensus among partners
- T2.2- The Board
 - 4 representants
- T2.3- The Coordinator: "business as usual"
- T2.4- The End-users
 - <u>There must be an End-users panel with two-way</u> <u>exchange of ideas</u>
- T2.5- Management events
 - 4 meetings. Last one open and with end-users
- T2.6- Management tools
 - Web page

- T2.1- Review and description of the most relevant impacts
- T2.2- Gathering climate information and climate change scenarios
- T2.3- Pre-selection of natural and altered study sites
- T2.4- Selection of natural sites for the biological data survey
- T2.5- Selection of case studies with altered flow regime
- T2.6- Hydrological flow regime characterization

- Identification of sites with gauging stations having long-term highquality data series
- Selection of case-studies in rivers with similar drainage basins and valley forms, and with minor flow disturbance
- Disturbed sites selected in the second year

Case studies: Spain

- Cabriel River:
 - > Natural site: upstream of a large dam (Contreras)
 - Altered downstream

RIPFLOW PROJECT

Case study: Austria

- Upper Drau: regulated river
 - > 1.3 km restoration section near Klebach
 - Modelling riparian vegetation gravel banks and side channels

- T3.1- Definition of the main questions for water management
- **T3.2-** Definition of RIPFLOW information flow
- T3.3- Definition of the model conceptualization and <u>structure</u>
- **T**3.4- Programming of the model

Ripflow general structure

iiama

iiama

RIPFLOW PROJECT

Soil moisture submodel

- Elements:
 - Vegetation
 - Static tank
 - Saturated zone
- Inputs (time series):
 - Precipitation
 - ≻ PET
 - River daily discharges

- T4.1- Hydraulic and biological survey in natural river sites
 - i) Hydrometry for hydraulic & habitat modelling (1D)
 - ii) Characterizing habitat patches & vegetation
- T4.2- Biological data processing in natural rivers
- T4.3- Hydraulic and biological survey in altered river sites

- Topography survey
- Hydrometry for calibrating Hydraulic Model 2D
- Vegetation survey by <u>habitat patches</u> within the study site (species and abundance, core samples to study age and growth) for vegetation submodel
- Soils Sampling \rightarrow Texture and O.M. for soil moisture submodel

- **T5.1-** Calibration and validation of the model
- T5.2- Model simulations in the case studies
- T5.3- Proposal of general water management recommendations
 - Recommended rules for water management
 - Prediction of the riparian veg. structure in non-disturbed situations
 - Expected changes of the ecological status under different climate change scenarios
 - Recommended environmental flows
 - Recommended water management rules that could minimize or mitigate the future impact of the climate change on the ecological status
- T5.4 Feedbacks to the RIPFLOW model

Detailed Time Schedule

Project duration: 2 years, starting November 3, 2008

Tasks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
WP 1. Project coordination																								
WP 2. Generating scenarios																								
T2.1- Review and description of the most relevant impacts																								
T2.2- Gathering climate information and climate change scenarios																								
T2.3- Making a pre-selection of natural study sites and altered study sites																								
T2.4- Selection of natural sites for biological survey																								
T2.5- Selection of case studies with regulated flow regime																								
T2.6- Hydrological flow regime																								
WP 3. Development of RIPFLOW model																								
T3.1- Definition of main questions for water management																								
T3.2- Definition of RIPFLOW information flow																								
T3.3- Definition of model conceptualization and structure																								
T3.4- Programming of the model																								
WP 4. Field data acquisition and processing																								
T4.1- Hydraulic and biological survey in natural river sites																								
T4.2- Biological data processing in natural rivers										_														
T4.3- Hydraulic and biological survey in altered river sites																								
WP 5. Model application to case studies																								
T5.1- Calibration and validation of the model																								
T5.2- Model simulations in the case studies																								
T5.3- Proposal of general water management recommendations																								
T5.4 Feedbacks to the RIPFLOW model																								

- Case studies results: Local end-users panel
- Methodologies:
 - > RIPFLOW program (web)
 - Final Report (web)
 - Congress presentations
 - Scientific publications
- General recommendations:
 - Final Report (web)
 - Congress presentations

