1. Objectives

Riparian ecosystems are important by their self and for their ecological services, therefore it is necessary to have a tool capable to predict the riparian vegetation response to its driving forces. The main goals of this project are:

I. To develop a flexible dynamic model of riparian vegetation that could be easily applied in a wide range of conditions across Europe:
 → from humid regions to Mediterranean conditions
 → with permanent and non-permanent flow regimes.

II. To apply the model to case studies of the countries involved in the project (Austria, Portugal and Spain) by:
 → calibrating and validating the model
 → delivering tools that support water management decisions

2. Ripflow Model

Main Ripflow v.3 Model

The Ripflow model is a type of vegetation model with dynamical rules that are based in:
- simulated physical parameters
- observed data
- expert rules
The model’s components are represented by raster meshes that simulate the succession/retrogression processes in a yearly time interval.

The model has 3 main components:

1. Start Condition: It estimates the vegetation of the study site before the first year of simulation, given ordinary conditions.
2. Dynamic Floodplain: This component evaluates the growth (succession) and spatial distribution of the study site’s vegetation. It has five modules which are executed in each iteration of the yearly loop:
 a. Recruitment: This module establishes a strip over the river level where seeds can develop, starting the riparian vegetation series.
 b. Shear Stress: It determines if the vegetation is destroyed when the shear stress from the river is higher than the plant’s critical value.
 c. Soil Moisture: This module uses the Ribav model to determine how the plants are affected by water shortage.
 d. Flood Duration: It determines how the flooding time periods affect the plants due to the anaerobiosis effect.
 e. Succession Progression: It represents the flow from a pioneer to a climax stage within a vegetation succession series.
3. Output View: Although this last component does not carry out any computational task, it is used to organize the output data after the simulation ends.

Ribav v.2.c Model

In this model the studied soil section is represented as a water tank filled with porous material. The vertical water of the tank has a daily variation depending on the soil moisture fluxes. The inputs of this model are the hydro-meteorological inputs and the morphology from the study site, but also taking into account the soil and the vegetation parameters. The main output is an Evapotranspiration index, which determines how the plant is affected by the water variation.

3. Case Studies

3.1 Portugal

STUDY SITE
Odelouca river:
- typical Mediterranean river
- non-permanent flow regime.
- No flow regulation upstream
- Near natural conditions (human pressure and riparian vegetation).

MODEL CALIBRATION
Expected vs observed: Good strength of agreement (quadratic weighted Kappa=0,61)

CLIMATE CHANGE SCENARIOS

Scenario 2: 130% winter flood intensity increase with the lowering of about 4 meter of the water table

RESULTS

- The riparian vegetation zonation found could be related to the biological traits of each species
- Succession phases distinguished from each other by habitat features, driven by the hydrologic regime.
- The results of the riparian vegetation model appeared to be correct for this case study, taking into account the expected changes in riparian vegetation caused by stream flow patterns modification

3.2 Austria

STUDY SITE
Drau river:
- typical alpine river
- permanent flow regime.
- No flow regulation upstream
- Channelized in the 1970s
- Restored in 2002:
 700m-section has been widened a side channel has been restored

CURRENT VEGETATION

RESULTS

- The riparian vegetation zonation found could be related to the biological traits of each species
- Succession phases distinguished from each other by habitat features, driven by the hydrologic regime.
- The results of the riparian vegetation model appeared to be correct for this case study, taking into account the expected changes in riparian vegetation caused by stream flow patterns modification

3.3 Spain

STUDY SITE
Mijares river:
- permanent flow regime.
- no flow regulation upstream and near natural conditions

MODEL CALIBRATION

- a confusion matrix with the simulated vs the observed vegetation types was used to make easier the calibration process.
- the main parameters to calibrate where the ET index thresholds and the critical shear stresses from the vegetation types.

CLIMATE CHANGE SCENARIOS

Simulations with hydro-meteorological inputs from the HadCM3 global circulation model and the PROMES regional model using A2 (pessimistic) and B2 (optimistic) scenarios.

RESULTS

- After the calibration a Kappa coefficient of k=0,71 was obtained.
- The simulations from the HadCM3 climate change inputs showed that the climate change scenarios would not influence significantly the riparian vegetation distribution