

ASSESSMENT OF FUTURE IMPACTS OF CLIMATE CHANGE AND ADAPTATION STRATEGIES IN SEMI-ARID REGIONS

David Pulido Velázquez Spanish Geological Survey (IGME); Unidad de Granada; Departamento de Infraestructura Geocientífica y Servicios

Granada, June 25 2013

(1) INTRODUCTION: Legal, social & technical framework

(2) A method to diagnose climate change impacts, vulnerability and adaptation strategies in <u>CU</u> systems at basin scale (Pulido-Velazquez et al., 2011)

- Serpis River Basin (Pulido-Velazquez et al., 2011; Master Thesis Montes, 2012)
- Jucar River Basin (Escriva-Bou et al., u.r.). Generation of FUTURE Q SCENARIOS

(3) Sensitivity of Groundwater recharge to climate change

- Serral Salinas aquifer (Pulido-Velazquez et al., u.r; JL Molina et al., 2012)
- La mancha Oriental aquifer

(4) Conclusions

Instituto Geológico v Minero de España

Water Framework Directive (WFD, 2000)

✓ Main target: Good status of surface & GW bodies (2015)

✓ Necessity of analysing WR management at <u>basin scale (CU)</u>

(20) The **quantitative status of groundwater** may have an **impact on** the ecological quality of **surface waters** & terrestrial ecosystems associated

(33)The objective of achieving good status should be pursued for each **river basin**, measures in respect of **surface water & groundwaters** belonging to the **same** ecological, hydrological and hydrogeological **system** are **coordinated**

Legal framework Social framework Technical framework

GLOBAL CHANGE & measures to achieve WFD objs

Preoccupation & interest about GC in Europe [guide document "*River Basin Management in a Changing Climate*" (UE, 2009)]

 Great strategic importance of knowing impact of CC on WR, hydrological planning + its guiding role in other sectors and systems (PNACC, 2006)

Legal framework Social framework Social framework Social framework Social framework Technical framework

TECHNICAL PROBLEMS in CU MANAGEMENT simulation: (1) Accurate and efficient GW FLOW simulation

- □ DISTRIBUTED MODELS:
 - Distributed variables: $h(\vec{x},t)$, $Q(\vec{x},t)$
 - **Distributed stresses :** $W(\vec{x},t)$
 - Equation solved = PDE

TECHNICAL PROBLEMS in **CU MANAGEMENT simulation**: (1) Accurate and efficient GW FLOW simulation. DISTRIBUTED APPROACH

- CLASSIC NUMERICAL METHODS (FD & FE): Not in COMPLEX MANAGEMENT MODELS over long time periods (Matsukawa et al., 1992; Theodossiou, 2004)
- INFLUENCE FUNTIONS (Maddock, 1972; Morel-Seytoux y Daly, 1975; Schwarz, 1976): LOWER COMPUTATIONAL COST than FDM and FEM
 - Disadvantage: to STORE previous stresses and IF; Linear GW flow problems
- Conceptual EMM (stream-aquifer interaction (Pulido-Velazquez et al., 2007; 2011) & hydraulic heads (Pulido-Velazquez et al., 2012) simulated with min computational cost STATE EQ facilitates the integration in CONJUNCTIVE USE MODELS

v Minero de España

TECHNICAL PROBLEMS in CU MANAGEMENT simulation. (2) Generation of future hydrological series (inflows, recharge)

Extensive literature about methods of **downscaling climatic series** to smaller cells, less attention has been paid to downscaling to study the impacts of CC on WR systems (Fowler et al., 2007b; Cayan et al., 2008)

 \Box Hydrologic response ratios (ej. Zhu et al., 2005) modifying μ of historical series. Simplification usually adopted in river basin management models = modifies mean according to change deduced from climate models

 \Box Incorporating not only change μ , but also σ (CC could significantly modify it) predicted by climate models (Pulido-Velazquez et al., 2011)

(1) **INTRODUCTION**: Legal, social & technical framework

(2) A **method** to diagnose climate change impacts, vulnerability and adaptation strategies in <u>CU</u> systems at basin scale (Pulido-Velazquez et al., 2011)

- Serpis River Basin (Pulido-Velazquez et al., 2011; Master Thesis Montes, 2012)
- Jucar River Basin (Escriva-Bou et al., u.r.). Generation of FUTURE Q SCENARIOS

(3) Sensitivity of Groundwater recharge to climate change

- Serral Salinas aquifer (Pulido-Velazquez et al., u.r; JL Molina et al., 2012)
- La mancha Oriental aquifer

(4) Conclusions

IMPACT & ADAPTATION STRATEGIES. (2) Basin scale CU analysis

Method: diagnose CC impacts, vulnerability and adaptation strategies

KINDS OF PROBLEMS

ORIGIN of problems & possible ADAPTIVE strategies

Demand satisfaction index $I_s = \frac{S}{D}$ Demand reliability index $I_r = \frac{S_r}{D}$ Withdrawal index $I_w = \frac{Y}{D}$ Withdrawal use index $I_u = \frac{S}{V}$

			DEMAND RELIAVILITY (I _r)							
				High (I _r *)		Intermediate (I _r ⁼)		Low (I _r ⁻)		
		WITHDRAWAL (I_w)	WITHDRAWAL USE (I _u)	Problems	Solutions	Problems	Solutions	Problems	Solutions	
		$High (l^{+})$	High (I _u ⁺)			2=	A	2+	A	
	High	rigi (i _w)	Low (I _u ⁻)			2= - 4	A ⁻ - C ⁻	2+ - 4	A ⁻ - C ⁻	
	(I _s *)	Low (I _w)	High I ¹⁺)			2 ⁼ - 3 ⁻	A ⁻ - B ⁻	2 ⁺ - 3 ⁻	A ⁻ - B ⁻	
DEMAND	Intermediate	High (I_w^+)	Low (I _u)	1 ⁼ - 4 ⁼	A ⁼ - C ⁼	1 ⁼ - 2 ⁼ - 4 ⁼	A ⁼ - C ⁼	1 ⁼ - 2 ⁺ - 4 ⁼	A ⁼ - C ⁼	
SATISFACTION	(I _s ⁼)	Low (I _w)	High (I _u ⁺)	1 ⁼ - 3 ⁼	A ⁼ - B ⁼	1 ⁼ - 2 ⁼ - 3 ⁼	A ⁼ - B ⁼	1 ⁼ - 2 ⁺ - 3 ⁼	A ⁼ - B ⁼	
(I _s)		High (I_w^+)	Low (I _u)	1 ⁺ - 4 ⁺	A ⁺ - C ⁺	1 ⁺ - 2 ⁼ - 4 ⁺	A ⁺ - C ⁺	1 ⁺ - 2 ⁺ - 4 ⁺	A ⁺ - C ⁺	
	Low		High (I _u ⁺)	1 ⁺ - 3 ⁺	A ⁺ - B ⁺	1 ⁺ - 2 ⁼ - 3 ⁺	A ⁺ - B ⁺	1 ⁺ - 2 ⁺ - 3 ⁺	A ⁺ - B ⁺	
	(I _s ⁻)	$LOW(I_w)$	Low (I _u)	1 ⁺ - 3 ⁺ - 4 ⁺	A ⁺ - B ⁺ - C ⁺	1 ⁺ - 2 ⁼ - 3 ⁺ - 4 ⁺	A ⁺ - B ⁺ - C ⁺	1 ⁺ - 2 ⁺ - 3 ⁺ - 4 ⁺	$A^+ - B^+ - C^+$	

+ high

- low

Problem:

1 Vulnerable: water scarcity may produce significant damages

2 Unreliable: low intensity droughts may lead to water scarcity

3 Excess of demand with respect to withdrawal (pumping+natural inflows-depletions produced by pumping)

4 Reduced use of withdrawal

Solution:

A Demand management

B Complemetary resources are needed (adittional pumping, water transfer, water reuse, etc)

= intermediate

C Increase regulation of the system withdrawal (surface structural workws, artificial recharge, water reuse, etc)

(Pulido-Velazquez et al, 2011)

If Pumpin (P)< aquifer recharge (R)

Problems: vulnerability, unreliability & demand > withdrawal, (severity \uparrow when B constraint \uparrow). Solutions: demand management &/or complementary resources (additional B or water transfer).

Area 22.348 km²; $\mu_{rainfall}$ = 510 mm/y; μ_{Ta} = 13.6°C;

Water resources available are 2384 Mm³; 75% regulated with reservoirs (1793 hm³)

Global **demand** = 1611 Mm³ (87.8% agriculture, 8.7% urban, 3.5% industrial)

V Instituto Geológico IMPACT & ADAPTATION STRATEGIES.

(2) Basin scale CU analysis

Jucar River Basin

Serpis River Basin

Selection of RCMs \Rightarrow Rg of **RCMs** values (A1B scenario)

Serpis River Basin **IMPACT & ADAPTATION STRATEGIES.** 🔁 Instituto Geológico y Minero de España (2) Basin scale CU analysis **Jucar River Basin** Water management models Departamento de Ingeniería Hidráulica y Medio Ambiente 222 Andreu et al., Historical **ENSEMBLES Climate Data** RCM 1998 Universidad Polity **Historic Inflows** Selection RCM SimWin Generation of Sistema soporte decisión para la Rainfall-Runoff Planificación de Recursos Hídricos Actual Demands future series Model SIMGES v. 2.0 of T² and P O Universidad Politécnica de Valencia Departamento de Ingeniería Hidráulica y Medio Ambiente **Future Population** Cropwat Model Statistics Ren Cahecera Júca Generation of future Generation of future Cabecera Cabri scenarios inflows scenarios demands Water Manageme 7 Aarcon Simulation Model Simulation ACU-Fittr.Contreras N. vos regadios Cuenca

Contreras-Molin

Contac

Abast Marina Baia

Abast Vinalopé Reg Mnalopó

Cabriel-2

23

(2) [1]

CN Correntes

B Molina

14

Jucar-4

AQUATOOL (Andreu et al., 1998)

Canal ATS AN

7) Ret_Reg_Cuenca

heres?

Ali Mancha Driental

on Manch 08 - 13 Reserva Susti Marcha

B_MO_ric

76 - 07

Marina Bala ATS

Apo2. Alarcón-Molina

Jucar

Canal M Cristina

8 inflows (our sub-basins), 7 reservoirs, 46 conduits, 17 consumptive demands, 3 hydro-power plants and 5 aquifers.

Results

Adaptive

Strategies

Riegos Canal J-T

-26-

Escalona v Carcagent

70, 12

16 Cullera_citricos

5 Cuatro_ Pueb_Citricos

> Cuatro_Pueb_Arroz

IMPACT & ADAPTATION STRATEGIES. (2) Basin scale CU analysis

Jucar River Basin

Water management models. RESULTS (impacts)

Instituto Geológico

y Minero de España

	Base Case			Short-Term (2011-2040)			Mid	-Term (2041-2	2070)	Long-Term (2071-2100)		
Demand	Monthly Guarantee	Annual Guarantee	Volumetric Guarantee	Garantía Mensual	Garantia Anual	Garantía Volumétrica	Garantía Mensual	Garantia Anual	Garantía Volumétrica	Garantía Mensual	Garantia Anual	Garantía Volumétrica
Valencia	100.00%	100.00%	100.00%	99.70%	100.00%	100.00%	98.10%	95.00%	99.40%	92.90%	83.30%	98.00%
Sagunto	100.00%	100.00%	100.00%	99.70%	100.00%	100.00%	98.30%	95.00%	99.50%	94.30%	86.70%	98.70%
Albacete	99.90%	98.30%	99.90%	97.90%	88.30%	98.20%	97.50%	80.00%	97.90%	85.80%	53.30%	87.00%
Marina Baja ATS	99.70%	98.30%	99.90%	96.90%	88.30%	97.30%	96.40%	78.30%	96.70%	81.00%	46.70%	83.00%
CN Cofrentes	100.00%	100.00%	100.00%	99.60%	96.70%	99.70%	96.90%	85.00%	97.60%	89.90%	63.30%	91.10%
Ac. Real y de Antella	83.30%	98.30%	99.30%	82.10%	88.30%	95.80%	66.80%	80.00%	93.40%	68.30%	46.70%	73.50%
Escalona y Carcagente	96.70%	96.70%	99.00%	70.80%	86.70%	94.40%	75.40%	78.30%	91.90%	39.90%	45.00%	69.70%
Sueca	96.70%	96.70%	98.80%	84.00%	90.00%	94.00%	81.70%	78.30%	91.70%	47.50%	45.00%	68.10%
Cuatro Pueblos	96.70%	96.70%	98.80%	84.00%	90.00%	93.90%	81.70%	78.30%	91.60%	47.50%	45.00%	67.80%
Cullera	96.70%	96.70%	98.80%	84.00%	90.00%	93.90%	81.70%	78.30%	91.60%	47.50%	43.30%	67.50%
Canal Júcar Turia	97.50%	96.70%	98.10%	88.60%	83.30%	90.70%	86.40%	71.70%	86.30%	61.20%	41.70%	55.80%
Sustitución Mancha	73.30%	96.70%	98.50%	89.30%	86.70%	91.50%	87.60%	73.30%	88.10%	62.20%	43.30%	61.60%
Zona Albacete	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Arroz Ac Real	82.90%	98.30%	99.20%	81.90%	88.30%	95.40%	71.80%	80.00%	92.90%	64.40%	46.70%	72.60%
Arroz Sueca	96.70%	96.70%	99.00%	84.00%	90.00%	94.70%	81.70%	78.30%	92.70%	47.50%	43.30%	72.90%
Arroz Cullera	96.70%	96.70%	99.00%	84.00%	90.00%	94.70%	81.70%	78.30%	92.70%	47.50%	43.30%	72.80%
Arroz Cuatro Pueblos	96.70%	96.70%	99.00%	84.00%	90.00%	94.70%	81.70%	78.30%	92.70%	47.50%	43.30%	72.90%

IMPACT & ADAPTATION STRATEGIES. (3) Basin scale CU analysis

Instituto Geológico y Minero de España

Jucar River Basin

Water management models. RESULTS (adaptive strategies)

		Withdrawal use (I_w)	Withdrawal (I_u)	Demand reli	iability (I _r)	lity (I _r)					
				High (I_s^+)		Intermediate	Intermediate (<i>I</i> ⁼ _s)		Low (I_s^-)		
				Problems	Solutions	Problems	Solutions	Prob	lems	Solutions	
	Demand satisfaction	n (I _s)									
	High (I_s^+)	High (I_w^+)	High (I_u^+)			2-	A ⁻	2*		A-	
			Low $(I_{\mathfrak{u}}^{-})$			2-4-	A ⁻ -C ⁻	2*-4	-	AC-	
		Low (I_w^-)	High (I_u^+)			2-3-	A ⁻ -B ⁻	2*-3	-	AB-	
	Intermidiate $(I_s^=)$	High (I_w^+)	Low (I_u^-)	1-4-	A"-C"	1-2-4-	A=_C=	1-2	+-4-	A=-C=	
		Low (I_w^-)	High (I_u^+)	1"-3"	A ⁻ -B ⁻	1"-2"-3"	A ⁻ -B ⁻	1-2	⁺ -3 ⁻	A"B"	
	Low (I_s^-)	High (I_w^+)	Low (I_u^-)	1*-4*	A^+-C^+	1+-24	A^+-C^+	1+-2	⁺ -4 ⁺	A*-C*	
		Low (I_w^-)	High (I_u^+)	1*-3*	A^+-B^+	1+-23+	A ⁺ -B ⁺	1+-2	⁺ -3 ⁺	A ⁺ -B ⁺	
			Low (I_{μ}^{-})	1+-3+-4+	$A^{+}-B^{+}-C^{+}$	1+-2=-3+-4+	A*-B*-C*	1+-2	+-3+-4+	A*-B*-C*	
Pr 1. 2.	roblem: Vulnerable: water : Unreliable: low int	scarcity may produce sig ensity droughts may lead	nificant damages. I to water scarcity.				ſ	High	Intermediate	Low	
Pr. 1. 2. 3. 4. Sol A.	roblem: Vulnerable: water : Unreliable: low int Excess of demand v Reduced use of wit plution: Demand managem	scarcity may produce sig ensity droughts may leac with respect to withdraw hdrawal. ent.	nificant damages. I to water scarcity. val (pumping + natural in	flows-depletions	s produced by p	oumping). Is (sat Ir (reli	sfaction) ability)	High >0.95 >0.90	Intermediate [0.80 - 0.95] [0.60 - 0.90]	Low < 0.80 < 0.60	
Pr 1. 2. 3. 4. Sol A. B.	roblem: Vulnerable: water : Unreliable: low int Excess of demand v Reduced use of wit olution: Demand managem Complementary re	scarcity may produce sig ensity droughts may lead with respect to withdraw hdrawal. ent. sources are needed (addi	nificant damages. l to water scarcity. al (pumping + natural in tional pumping, water tr	flows-depletions	s produced by p use, etc.).	oumping). Is (sat Ir (reli Iw (wi	sfaction) ability) :hdrawal)	High >0.95 >0.90 >0.75	Intermediate [0.80 - 0.95] [0.60 - 0.90] -	Low < 0.80 < 0.60 < 0.75	
Pr 1. 2. 3. 4. Sol A. B. C.	roblem: Vulnerable: water s Unreliable: low int Excess of demand y Reduced use of wit olution: Demand managem Complementary res	scarcity may produce sig ensity droughts may lead with respect to withdraw hdrawal. ent. sources are needed (addi of the system withdraw	nificant damages. l to water scarcity. al (pumping + natural in tional pumping, water tr al (surface structural wo	flows-depletions ansfer, water re rks, artificial rec	s produced by p use, etc.). :harge, water re	oumping). Is (sat Ir (reli Iw (wi use, etc.). Iu (wi	sfaction) ability) :hdrawal) hdrawal use)	High >0.95 >0.90 >0.75 >0.95	Intermediate [0.80 - 0.95] [0.60 - 0.90] - -	Low < 0.80 < 0.60 < 0.75 < 0.95	
Pr 1. 2. 3. 4. Sol A. B. C.	roblem: Vulnerable: water s Unreliable: low int Excess of demand v Reduced use of wit olution: Demand managem Complementary res Increase regulation	scarcity may produce sig ensity droughts may lead with respect to withdraw hdrawal. ent. sources are needed (addi of the system withdraw	nificant damages. l to water scarcity. val (pumping + natural in tional pumping, water tr al (surface structural wo	flows-depletions ansfer, water re rks, artificial rec	s produced by p use, etc.). :harge, water re	umping). Is (sat Ir (reli Iw (wi use, etc.). Iu (wi	sfaction) ability) :hdrawal) hdrawal use)	High > 0.95 > 0.90 > 0.75 > 0.95	Intermediate [0.80 - 0.95] [0.60 - 0.90] - -	Low <0.80 <0.60 <0.75 <0.95	
Pr 1. 2. 3. 4. Sol A. B. C.	roblem: Vulnerable: water : Unreliable: low int Excess of demand v Reduced use of wit olution: Demand managem Complementary res Increase regulation Base Case	scarcity may produce sig ensity droughts may leac with respect to withdraw hdrawal. ent. sources are needed (addi of the system withdraw Short-Term Mid-T	nificant damages. I to water scarcity. al (pumping + natural in tional pumping, water tr al (surface structural wo erm Long-Term	flows-depletions ransfer, water re rks, artificial rec	s produced by p use, etc.). charge, water re	oumping). Is (sat Ir (reli Iw (wi use, etc.). Iu (wi term in	sfaction) ability) thdrawal) hdrawal use) dices:	High > 0.95 > 0.90 > 0.75 > 0.95 Acce	Intermediate [0.80 - 0.95] [0.60 - 0.90] - - ptable	Low <0.80 <0.60 <0.75 <0.95 situat	
Pr 1. 2. 3. 4. Sol A. B. C. tisfaction)	roblem: Vulnerable: water s: Unreliable: low int Excess of demand w Reduced use of wit olution: Demand managem Complementary res Increase regulation Base Case 0.9943	scarcity may produce sig ensity droughts may lead with respect to withdraw chdrawal. ent. sources are needed (addi of the system withdraw Short-Term Mid-T 0.9691 0.95	nificant damages. I to water scarcity. val (pumping + natural in tional pumping, water tr al (surface structural wo erm Long-Term 15 0.8213	flows-depletions ansfer, water re rks, artificial rec Short Long	s produced by p use, etc.). :harge, water re & Mid g-Term	oumping). Is (sat Ir (reli Iw (wi use, etc.). Iu (wi term in scenari	sfaction) ability) thdrawal) hdrawal use) dices: o indic	High >0.95 >0.90 >0.75 >0.95 Acce es ==	Intermediate [0.80 - 0.95] [0.60 - 0.90] - - • • • • • • • • • • • • • • • • •	Low <0.80 <0.60 <0.75 <0.95 situat rable,	
Pr 1. 2. 3. 4. Soi A. B. C. tisfaction) liability)	roblem: Vulnerable: water s Unreliable: low int Excess of demand v Reduced use of wit olution: Demand managem Complementary res Increase regulation Base Case 0.9943 0.9893	scarcity may produce sig ensity droughts may lead with respect to withdraw hdrawal. ent. sources are needed (addi of the system withdraw Short-Term Mid-T 0.9691 0.95 0.9470 0.92	nificant damages. I to water scarcity. al (pumping + natural in tional pumping, water tr al (surface structural wo erm Long-Term 15 0.8213 28 0.7517	flows-depletions ansfer, water re rks, artificial rec Short Long unreliab	s produced by p use, etc.). :harge, water re & Mid g-Term ole, exce	umping). Is (sat Ir (reli Iw (wi use, etc.). Iu (wi term in scenari ess of d	sfaction) ability) thdrawal) hdrawal use) dices: o indic emand	High > 0.95 > 0.90 > 0.75 > 0.95 Acce es =	Intermediate [0.80 - 0.95] [0.60 - 0.90] 	Low <0.80 <0.60 <0.75 <0.95 situat rable, withdra	
Pr 1. 2. 3. 4. So A. B. C. tisfaction) iability) ithdrawal)	roblem: Vulnerable: water : Unreliable: low int Excess of demand v Reduced use of wit olution: Demand managem Complementary res Increase regulation Base Case 0.9943 0.9893 1.4101	scarcity may produce sig ensity droughts may lead with respect to withdraw hdrawal. ent. sources are needed (addi of the system withdraw Short-Term Mid-T 0.9691 0.95 0.9470 0.92 1.2685 1.17	nificant damages. I to water scarcity. al (pumping + natural in tional pumping, water tr al (surface structural wo erm Long-Term 15 0.8213 28 0.7517 73 0.8613	flows-depletions ansfer, water re- rks, artificial rec Short Long unreliab	s produced by p use, etc.). :harge, water re & Mid g-Term ole, exce IONS: I	umping). Is (sat Ir (reli Iw (wi use, etc.). Iu (wi term in scenari ess of d Demano	sfaction) ability) (hdrawal) hdrawal use) dices: o indic emand manage	High >0.95 >0.90 >0.75 >0.95 Accce es = resp	Intermediate [0.80 - 0.95] [0.60 - 0.90] - - - - - - - - - - - - -	Low <0.80 <0.60 <0.75 <0.95 situat rable, withdra	

ASSESSMENT OF FUTURE IMPACTS AND ADAPTATION STRATEGIES TO CLIMATE CHANGE IN SEMI-ARID REGIONS

(1) **INTRODUCTION**: Legal, social & technical framework

(2) A method to diagnose climate change impacts, vulnerability and adaptation strategies in <u>CU</u> systems at basin scale (Pulido-Velazquez et al., 2011)

- Serpis River Basin (Pulido-Velazquez et al., 2011; Master Thesis Montes, 2012)
- Jucar River Basin (Escriva-Bou et al., u.r.). Generation of FUTURE Q SCENARIOS

(3) Sensitivity of Groundwater recharge to climate change

- Serral Salinas aquifer (Pulido-Velazquez et al., u.r; JL Molina et al., 2012)
- La mancha Oriental aquifer

(4) Conclusions

IMPACT & ADAPTATION STRATEGIES.(3) Sensitivity of GW recharge

Instituto Geológico y Minero de España

Mancha Oriental

Serral Salinas

□ S ≈ 200 km² (53 km² permeable outcrops)
 □ Mean historical rainfall (1960-1990) = 278.3 mm/year
 □ Composed mainly by dolomites and limestones

□ $S \approx 7400 \text{ km}^2$ □Mean historical rainfall (1960-1990)= 300 mm(south)-550 mm(north)

Serral Salinas

(3) Sensitivity of GW recharge

Mancha Oriental

DISTRIBUTED analysis of GW RECHARGE. (SWAT, 2007)

(1) INTRODUCTION: Legal, social & technical framework

- Necessity of CU management models (MM) of WR at basin scale
- TECHNICAL PROBLEMS for accurate CU MANAGEMENT analysis:
- Efficient and accurate CU simulation (Advantages of Eig. approaches)
- Generation of future hydrological series (usually limited to μ anomalies)

(2) A method to diagnose climate change impacts, vulnerability and adaptation strategies in <u>CU</u> systems at basin scale (Pulido-Velazquez et al., 2011)

- Method to Generate future hydrological scenarios (basin scale MM) = monthly μ & σ anomalies
- Method, based on some indices (obtained from a CU system MM) can be applied to identify problems and solutions to CC in a WR system

Case studies: Serpis and Jucar River Basin

IMPACT & ADAPTATION STRATEGIES. (1) CONCLUSIONS

(3) Sensitivity of Groundwater recharge to climate change

• Method to Generate future recharge scenarios (basin scale MM) = monthly μ & σ anomalies

• A lumped analysis of CC impacts has ben performed in Serral Salinas

A distributed analysis of CC impacts has ben performed in Mancha Oriental

Thank you very much for your attention!

Instituto Geológico y Minero de España

David Pulido Velázquez Spanish Geological Survey (IGME); Unidad de Granada; Departamento de Infraestructura Geocientífica y Servicios

ASSESSMENT OF FUTURE IMPACTS AND ADAPTATION STRATEGIES TO CLIMATE CHANGE IN SEMI-ARID REGIONS

David Pulido Velázquez Spanish Geological Survey (IGME); Unidad de Granada; Departamento de Infraestructura Geocientífica y Servicios

Granada, June 25 2013

