
Scenario-based Urban Water Management

Dr Raziyeh Farmani

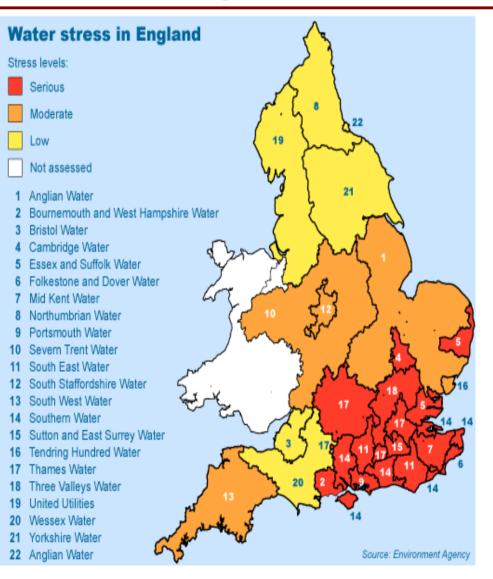
Senior Lecturer, Centre for Water Systems, University of Exeter, UK

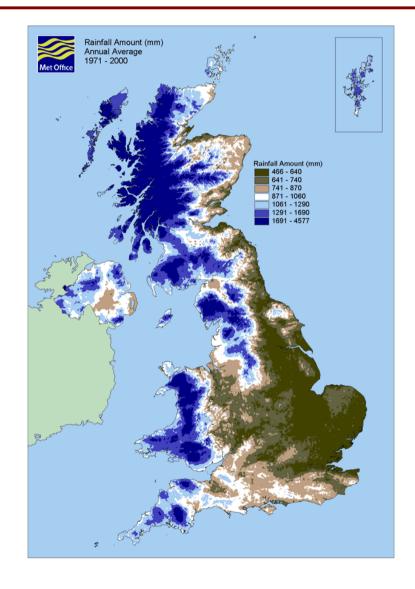
r.farmani@exeter.ac.uk

Granada, June 2012

Overview

- Context and approach
- Research:
 - Form
 - Function
- Conclusions


UK Drivers



- Reduce per capita *potable water demand* to 130 l/p/d by 2030
- Improve surface water management, especially to *manage flood risk*
- Continue progress in improving *environmental water quality* to Water Framework Directive 'good' status
- Reduce greenhouse gas emissions (80% by 2050)
- Provide 200,000 *new homes* by 2016

Water Stress levels in England

Annual UK rainfall

Regional Visions of Sustainable Infrastructure Optimised for Neighbourhoods ReVISIONS, 2008-2012

Aims to provide the knowledge and evidence base to aid the **planning of regional spatial development** together with **infrastructure** for transport, water, waste and energy in a more coordinated and integrated way so as to:

- reduce impacts on the environment and resources,
- improve **economic** competitiveness
- allow households to live more **sustainably**, with a socially inclusive and enhanced quality of life.

Research areas

- Environmental modelling and overall assessment
- Water services
- Energy conversion and supply
- Water demand modelling
- Waste management
- The building stock and building energy demand
- Health
- Transport

Case studies

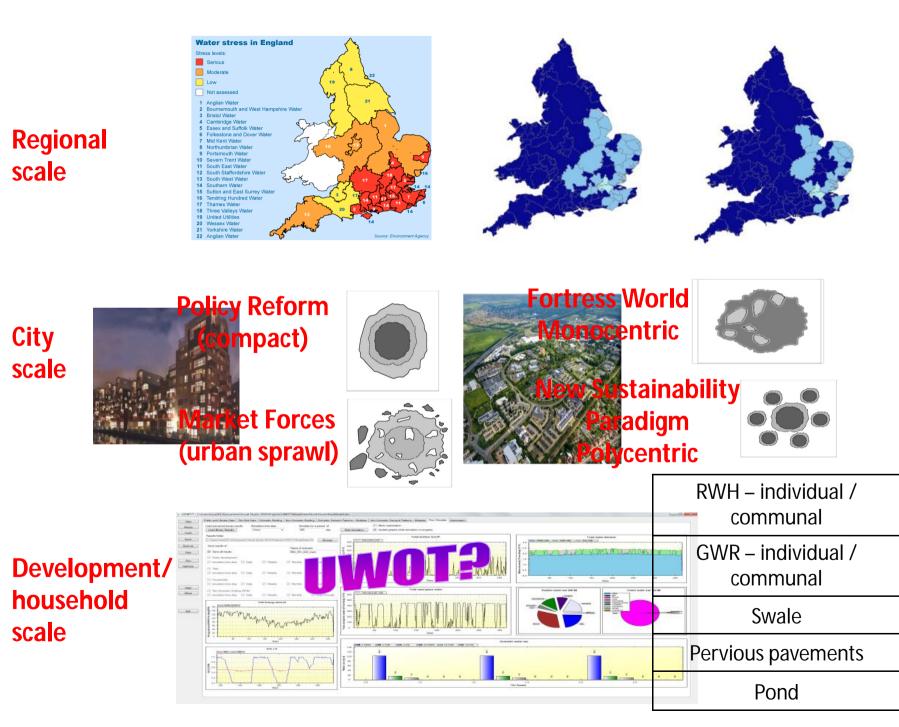
- The South East region
- The East of England region
- The North East of England
- International case studies
 - Beijing, China

East of

England

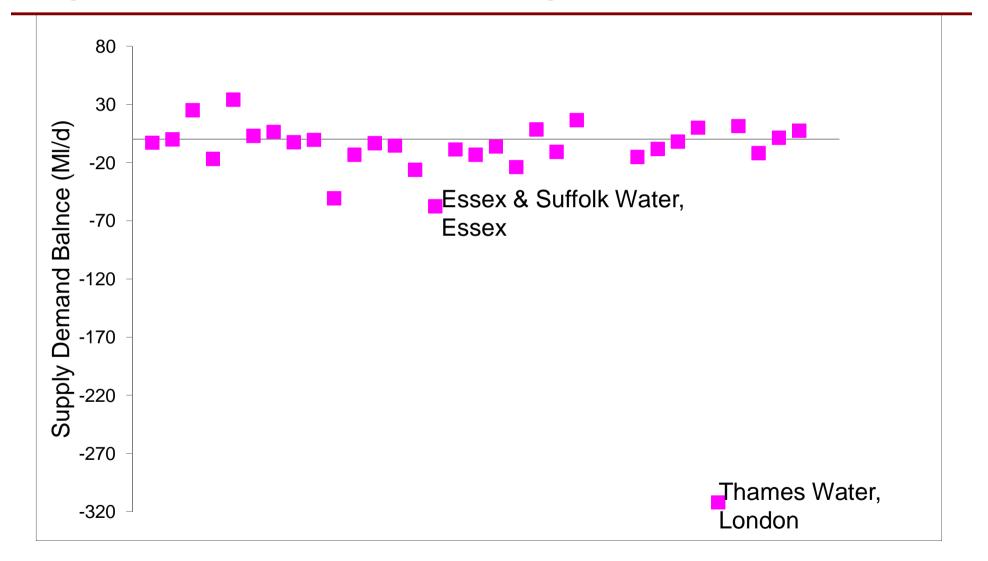
- Sao Paulo, Brazil
- Southern California, USA

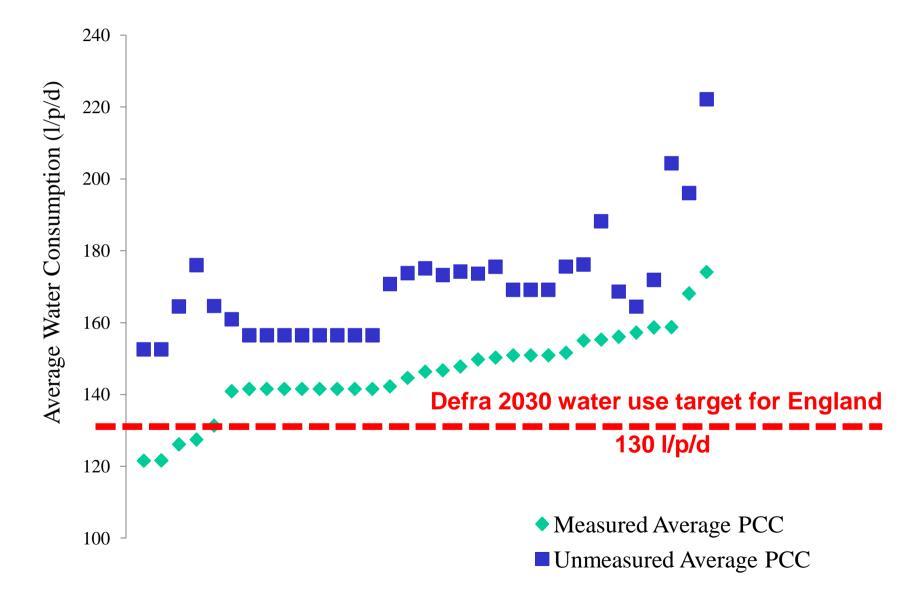
Urban Futures, **2008-2012**


- Sustainable urban regeneration
 - envisioning the future to make more sustainable decisions today

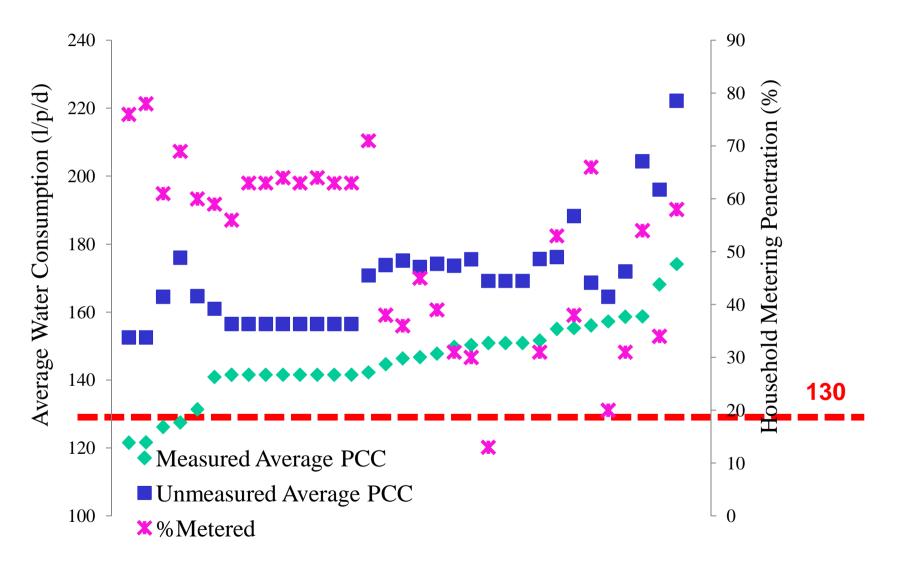
Research areas

- 1: Biodiversity
- 2: Air Quality
- C Water and Wastewater
- 4: Sub-Surface Built Environment (infrastructure and utilities)
- 5: Surface Built Environment and Open Space
- 6: Density and Design Decision Making
- 7: Organizational Behavior and Innovation
- 8: Social Needs, Aspirations and Planning Policy





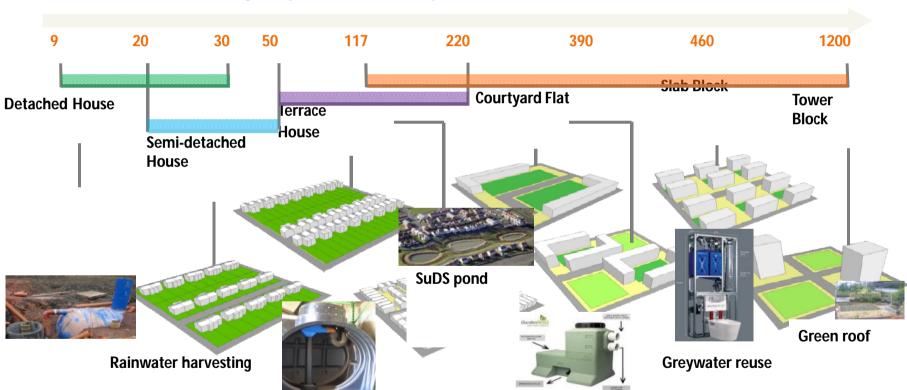
Supply Demand Balance (Wider South East, 2031)



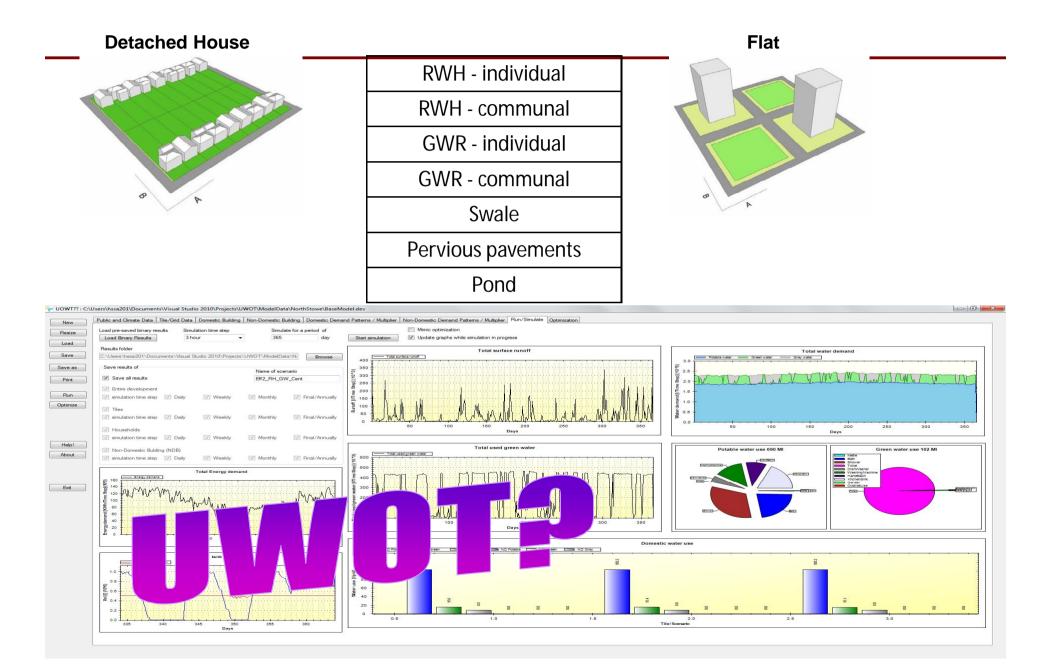
Water consumption – PCC (Wider South East Water Companies, 2031)

Water consumption and %metered households (Wider South East, 2031)

Future Scenarios

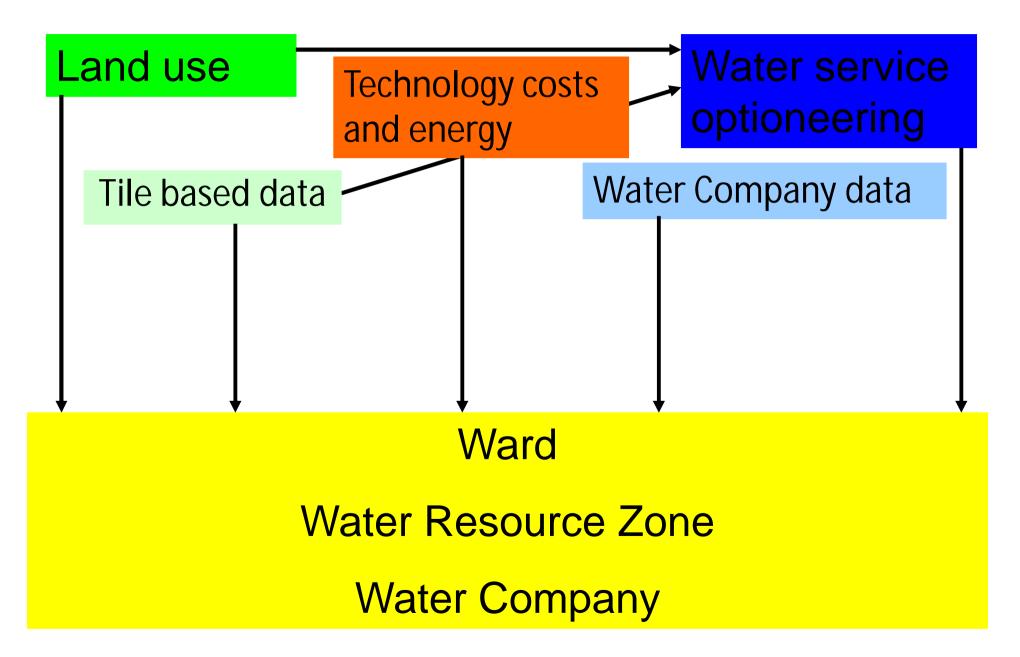


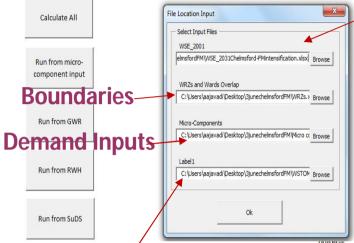
Impact of alternative scenarios on supply-demand balance


- Land Use Scenarios
 - Trend
 - Compaction
 - Market led
- Water Technology Options
 - Metering and Water Efficient Appliances
 - Rainwater Harvesting (RWH)
 - Greywater Reuse (GWR)
- Sustainable Drainage (SuDS)
 - Pond
 - Swale
 - Permeable Pavement
- Green Roofs

Tile-based Water Service Optioneering

Density of plots (dwelling per hectare)


Tile-based Water Service Optioneering


Area Type – Water Service Optioneering

		Areat	type	
-	Central	Urban	Suburban	Rural
New Build	GWR (I), RWH (C), GR, PermPave, Swale	GWR (I), RWH (I/C), GR, PermPave, Swale	GWR (I/C), RWH (I), RWH (C), GR, Pond, PermPave, Swale	All
Retrofit	GWR (I), GR, PermPave, Swale	GWR (I), GR, PermPave, Swale	GWR (I), RWH (I), GR, Pond, PermPave, Swale	All except RWH (C) and GWR (C)

Land Use – Water modelling framework

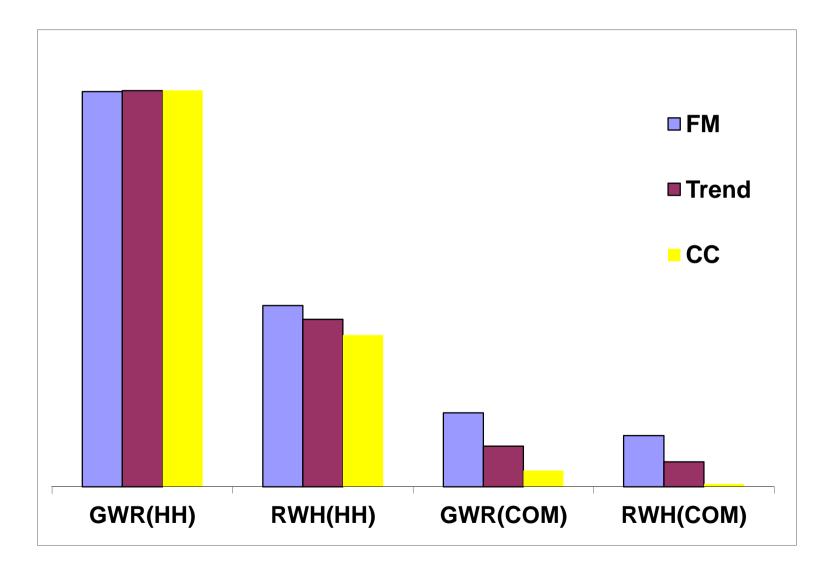
Water Technology Optioneering Model (WTOM)

Alternative Tech Inputs (costs, energy, tile data)

NAME	Water Utility	WRZ_Name	Ward Area (m2)	Ward area in WRZ (m2)	Fraction of Ward in WRZ	
Aldersgate	Thames Water	London	129,865	129,865	1	
Bishopsgate	Thames Water	London	563,889	563,889	1	
Cripplegate	Thames Water	London	CET 1 200	007 470	× 1	
Farringdon Within	Thames Water	London	Ward Selection	201.000	0.992032774	
Farringdon Without	Thames Water	London	C All Wards	London	0.985883761	
Portsoken	Thames Water	London	All Wallus	Essex	1	
Queenhithe	Thames Water	London	Select by Zone	Central	0.942301035	
Tower	Thames Water	London			0.946510011	
Walbrook	Thames Water	London	C Select by Utility	y Utility		
Abbey	Essex & Suffolk Water	Essex	Significant 0.25		0.02	
Abbey	Thames Water	London	proportion	Coolo	0.98	
Alibon	Three Valleys Water	Central	Build Type		0.3	
Becontree	Essex & Suffolk Water	Essex	C Existing		1	
Chadwell Heath	Essex & Suffolk Water	Essex			1	
Eastbrook	Essex & Suffolk Water	Essex	Intensification			
Eastbury	Essex & Suffolk Water	Essex	C Build on new land		1	
Gascoigne	Essex & Suffolk Water	Essex		Area Typ Build Typ	0.977332631	
Goresbrook	Essex & Suffolk Water	Essex	Г. —	Dullu i y		
Heath	Essex & Suffolk Water	Essex	ок		1	
Longbridge	Essex & Suffolk Water	Essex			1	
Mayesbrook	Essex & Suffolk Water	Essex	1,850,769	1,850,769	1	
Parsloes	Essex & Suffolk Water	Essex	1,243,277	1,243,277	1	
River	Essex & Suffolk Water	Essex	3,135,581	3,116,283	0.993845503	

	A	В	С	D	M	M N		Р	Q	R	S	Т		
1						Standard RWH Technology								
2		Gene	eral Ward Inf	formation	Water sav	ing from RWH	RWH	l Costs	RWH	CO2	RWH Costs RWH CO2			
3	Ward	WRZ	Total Dwell	Total Pop	HH (m3/day)	Comm (m3/day)	HH Cost (£)	Com Cost (£)	HH CO2	Com CO2	HH Cost (f)	HH CO2		
4	Essex & Su	ffolk '	Water											
5	00ABFZ	1	4381	10841	64	61	4706400	1621370	374711507	42483	2952400	4407791		
6	00ABGA	1	4072	9361	62	60	4523550	1545555	355364493	40488	2827200	4180209		
7	00ABGB	1	4043	9921	68	65	4988625	1690333	388217913	44289	3109800	4566669		
8	00ABGC	1	4334	10108	56	53	4168450	1381472	322876111	36204	2595200	3798043		
9	00ABGD	1	4141	9235	3	0	214650	0	14784039	0	129600	173907		
10	00ABGE	1	4124	10271	9	52	556500	1345370	38328990	35259	336000	450870		
11	00ABGF	1	4245	9701	11	46	739350	1211188	50922801	31731	446400	599013		
12	00ABGG	1	3483	8812	55	52	4141950	1292334	300061236	33852	2533200	3529668		
13	00ABGH	1	3920	9412	11	53	707550	1371435	48732573	35973	427200	573249		

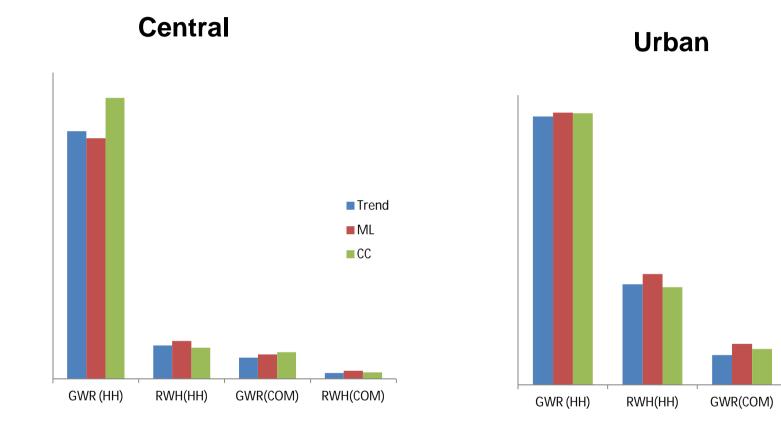
00ABGF


00ABGH 00ABGJ 00ABGK

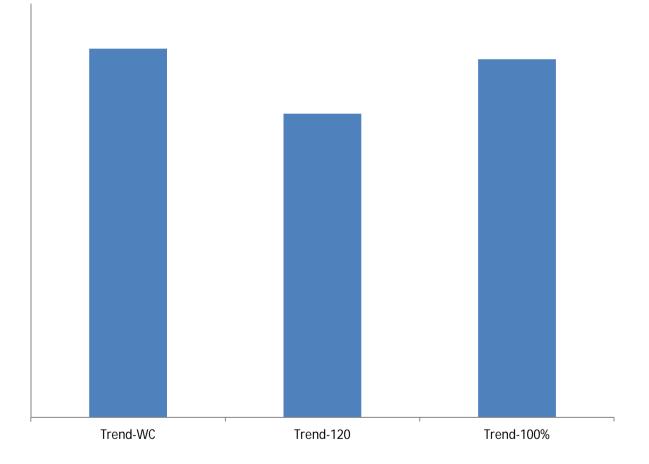
Results

Economic Inputs (land use, population, tile data)

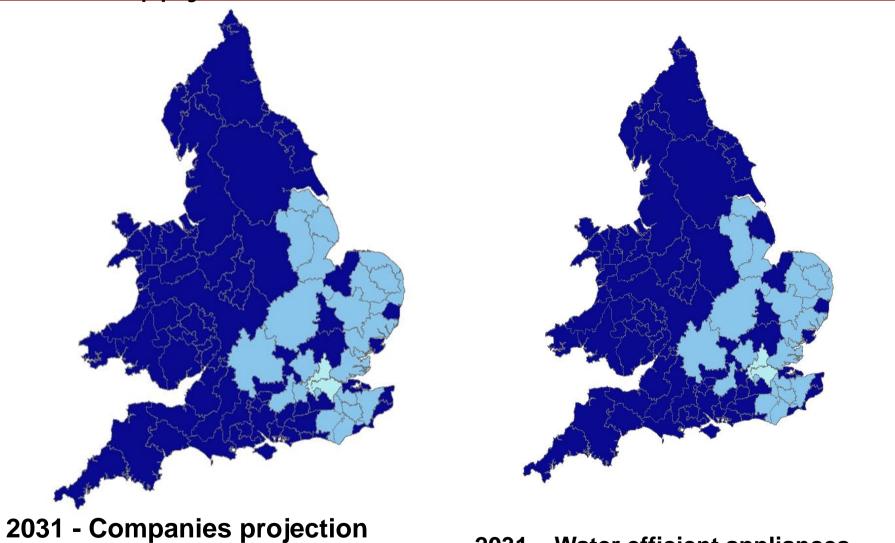
Impact of urban form on supply-demand balance

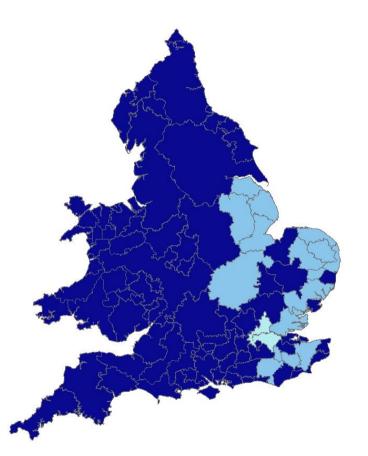

Impact of urban form on supply-demand balance

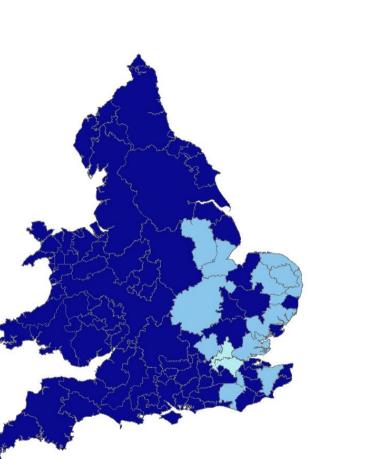
Trend


ML

RWH(COM)

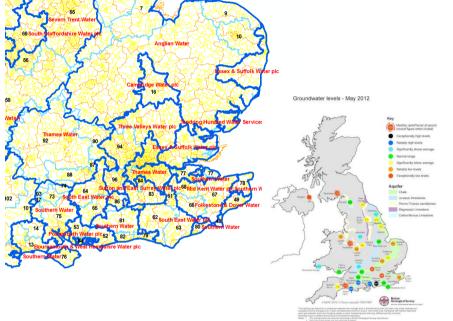

Impact of water management options on supply-demand balance


Wider South-East Supply-demand balance



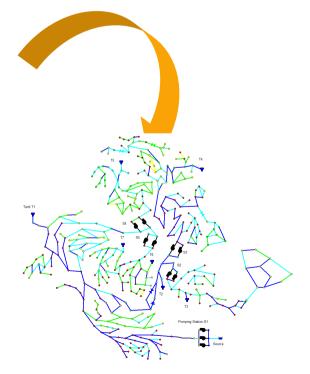
2031 – Water efficient appliances

Wider South-East Supply-demand balance


2031 Water efficient appliances + RWH

2031 Water efficient appliances + GWR

Linking Regional Planning/policy to Local Design/management

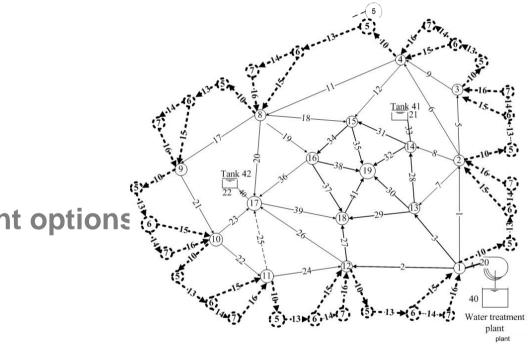


Local Decisions:

Urban Form
Infrastructural Design
 (water, sewer, etc.)

High level Planning:

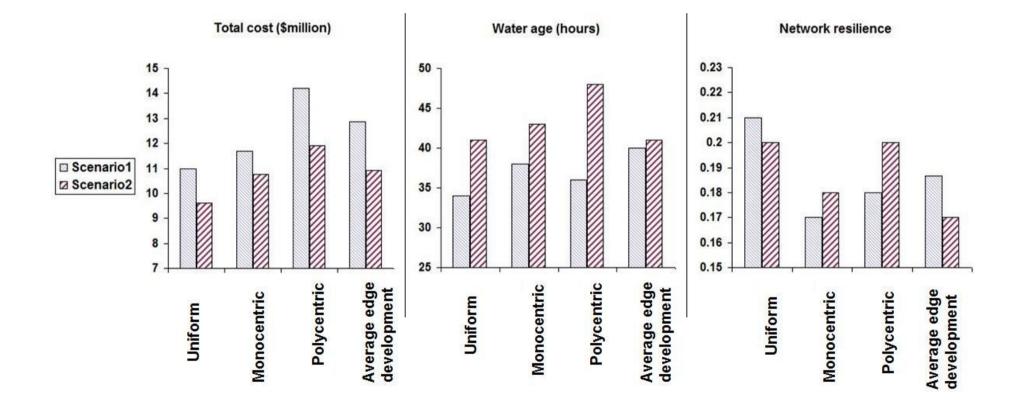
- Growths (population, demand)
- Spatial availability of water resources


Sensitivity of current water infrastructure performance to different urban forms and water management options

- Urban form
 - Compaction/uniform
 - Monocentric
 - Polycentric
 - Edge development
- Population
 - Medium
 - High
- Water demand management options
 - Water company
 - 100% metering
 - Water efficiency

• Performance

- Cost,
- Water quality and
- resilience



Growth and Water efficiency scenarios

Scenario	Existing homes Per capita (L/head/day) Total (m³/d, gpm)	New homes Per capita (L/head/day) Total (m³/d, gpm)
1. No retrofit		
a. No new growth	150	
	43,608 / 8000	
b. Medium growth	150	120
	43,608 / 8000	16,353 / 3000
c. High growth	150	120
	43,608 / 8000	21,804 / 4000
2. Retrofit		
a. No new growth	120	
	34,886 / 6400	
b. Medium growth	120	120
	34,886 / 6400	16,353 / 3000
c. High growth	120	120
	34,886 / 6400	21,804 / 4000

Urban form and Technology choice influences

Sensitivity and adaptability of current water infrastructure performance to different futures

Population and demand changes

Future	Population change	PCC change
PR	35%	-20%
MF	45%	5%
FW	20%	-10%
NSP	25%	-30%

EA, 2009

demand changes variation: -50% - +50%

Assess the necessary conditions against the scenario characteristics

Sensitivity of individual		CSH level 5/6	(PCC)	PR (PCC)	c & POP)	FW (PCC)	Existing demand	(PCC) (PCC & POP)	(POP)	NSP (POP)	PR (POP)	MF (POP)	C & POP)			Desig	1 scenarios	
scenarios		CSH le	NSP	PR (NSP (PCC	FW (Existing	MF (PR and FW	FW (dsn	PR (MF (MF (PC(Costs (\$million) Resilien			Resilience	
Designed for	Demand change	0.5	0.7	0.8	0.88	0.9	1	1.08	1.2	1.25	1.35	1.45	1.52	Total	Pipe	Tank	Operational	
CSH level 5/6	0.5		V	X	х	х	x	X	X	х	х	х	x	6.05	3.33	0	2.72	0.24
NSP (PCC)	0.7	V		х	x	х	х	x	х	х	x	х	x	7.48	3.83	0	3.64	0.24
PR (PCC)	0.8	V	\checkmark		x	х	x	x	x	x	x	x	x	8.10	3.80	0	4.12	0.24
NSP (PCC & POP)	0.88	V	V	V	í	V	V	X	х	х	х	х	х	8.40	3.86	0	4.54	0.24
FW (PCC)	0.9	V	V	V	V		x	x	x	x	х	х	x	8.54	3.98	0	4.56	0.24
Existing demand	1	V	\checkmark	\checkmark	\checkmark	V		x	x	x	x	x	x	9.05	4.01	0	5.04	0.24
MF (PCC) PR and FW (PCC & POP)	1.08	\checkmark	V	\checkmark	\checkmark	\checkmark	V		x	x	x	x	x	9.31	3.83	0	5.48	0.24
FW (POP)	1.2		V	V	V	V	V	V		V	х	х	x	9.60	3.55	0	6.05	0.24
NSP (POP)	1.25	V	V	V	V	V	V	V	V		X	x	x	10.16	3.83	0	6.34	0.24
PR (POP)	1.35	V	V	V	V	V	V	V	V	V		x	x	10.85	4.08	0	6.76	0.24
MF (POP)	1.45	V	1		×.	v	V	V	×		2		x	12.08 4.82 0 7.26			0.24	
MF (PCC & POP)	1.52		V	V			V		V		V	1	[12.80	5.23	0	7.57	0.24

There is a reluctance to plan for the longterm impacts of changes due to perceived uncertainty associated with the impacts and the financial risks involved

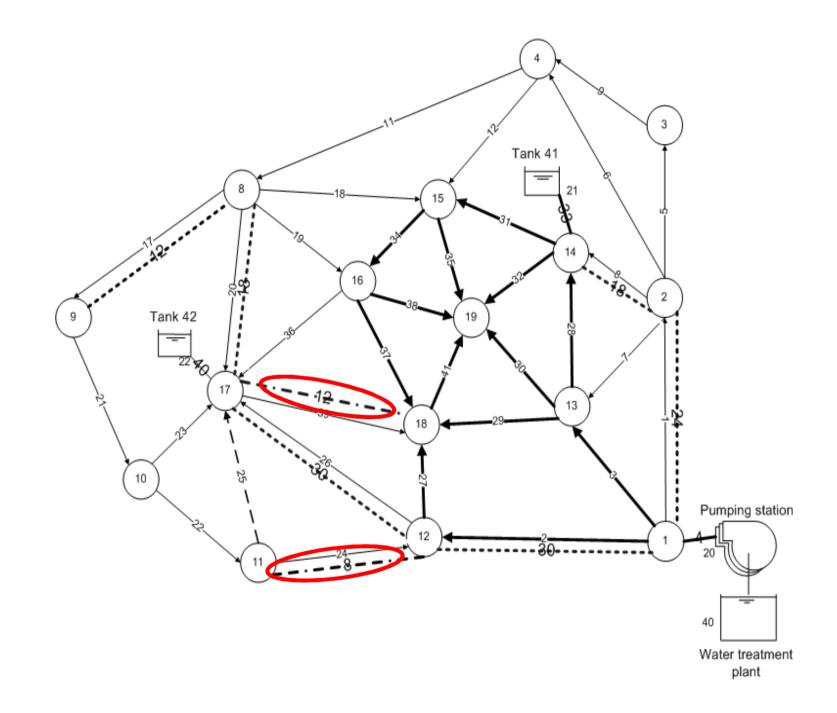
(Defra, 2010, Adapting Energy, Transport and Water Infrastructure

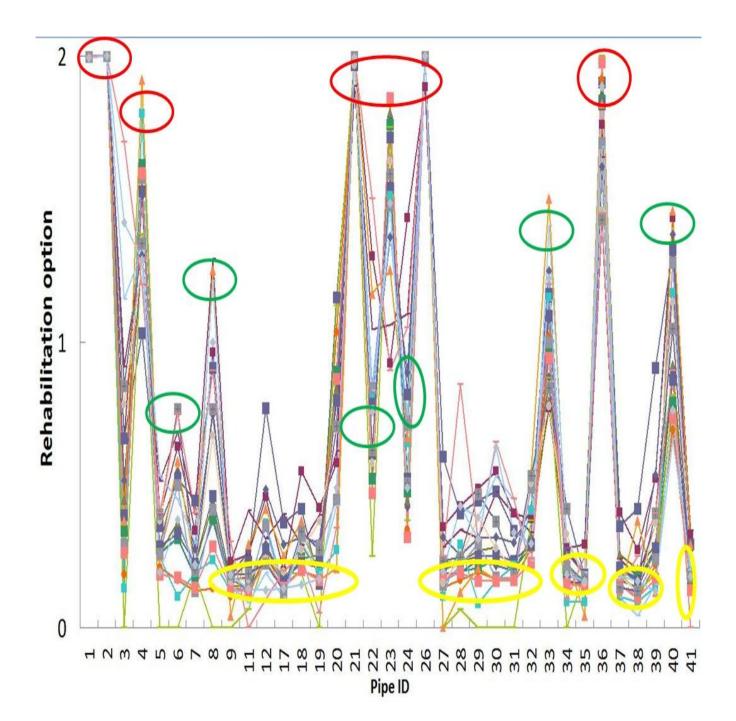
to the Long-term Impacts of Climate Change)

Alternative strategies to introduce resilience

- Operational
- Designed-in operational
- Multistage design and operational

Operational strategy


Sensitivity of individual		CSH level 5/6	(PCC)	PR (PCC)	C & POP)	FW (PCC)	Existing demand	(PCC) (PCC & POP)	(POP)	(POP)	PR (POP)	MF (POP)	(& POP)			Desig	1 scenarios	
scenarios		CSH le	NSP (PR (NSP (PCC	FW (Existing	MF (PR and FW (FW (NSP (PR (MF (MF (PCC	Costs (\$million) Resilier			Resilience	
Designed for	Demand change	0.5	0.7	0.8	0.88	0.9	1	1.08	1.2	1.25	1.35	1.45	1.52	Total	Pipe	Tank	Operational	
CSH level 5/6	0.5			V	V	V	V	V	V	X	x	x	x	6.05	3.33	0	2.72	0.24
NSP (PCC)	0.7	V		N	Ń	Ń	V	V	V	\checkmark	x	x	х	7.48	3.83	0	3.64	0.24
PR (PCC)	0.8	V	V		N	V	V	Ń	N		x	x	x	8.10	3.80	0	4.12	0.24
NSP (PCC & POP)	0.88	V	V	V			V	V	Ň		x	x	x	8.40	3.86	0	4.54	0.24
FW (PCC)	0.9	V	V	V	V		,			V	x	x	x	8.54	3.98	0	4.56	0.24
Existing demand	1	\checkmark	V	V	V	V		\checkmark		V	X	x	x	9.05	4.01	0	5.04	0.24
MF (PCC) PR and FW (PCC & POP)	1.08	V	\checkmark	V	\checkmark	\checkmark	\checkmark		N	V	x	x	x	9.31	3.83	0	5.48	0.24
FW (POP)	1.2	V	V	V	V	V		V		V	x	x	x	9.60	3.55	0	6.05	0.24
NSP (POP)	1.25	V	V	V	V	V	\checkmark	\checkmark	V		\checkmark	x	х	10.16	3.83	0	6.34	0.24
PR (POP)	1.35	V	V	V	V	V		V	V	V		\checkmark	X	10.85	4.08	0	6.76	0.24
MF (POP)	1.45	V	V	V	V	V	V		V	V	\checkmark		x	12.08	4.82	0	7.26	0.24
MF (PCC & POP)	1.52	V	V	V	V	\checkmark	\checkmark			V	\checkmark	V		12.80	5.23	0	7.57	0.24


Designed-in operational strategy

Single design an scheduling b		Design scenarios									
alternative s		Costs (\$million)									
Designed for	Demand change	Pipe	Tank	Operational	Total						
CSH level 5/6	0.5	4.81	0	3.94	8.75	0.17					
NSP (PCC)	0.7	4.81	0	4.40	9.21	0.24					
PR (PCC)	0.8	4.81	0	4.65	9.46	0.28					
NSP (PCC & POP)	0.88	4.81	0	4.69	9.5	0.29					
FW (PCC)	0.9	4.81	0	4.95	9.76	0.28					
Existing demand	1	4.81	0	5.31	10.12	0.27					
MF (PCC) PR and FW (PCC & POP)	1.08	4.81	0	5.52	10.33	0.26					
FW (POP)	1.2	4.81	0	6.06	10.87	0.20					
NSP (POP)	1.25	4.81	0	6.28	11.1	0.26					
PR (POP)	1.35	4.81	0	6.74	11.55	0.19					
MF (POP)	1.45	4.81	0	7.19	12.00	0.2					
MF (PCC & POP)	1.52	4.81	0	7.52	12.33	0.22					

Multistage design and operational strategy

Multistage d multiple schedul		Design scenarios									
alternative s		Costs (\$million)									
Designed for	Demand change	Pipe	Tank	Operational	Total						
CSH level 5/6	0.5	4.77	0	3.66	8.43	0.17					
NSP (PCC)	0.7	4.77	0	4.17	8.94	0.26					
PR (PCC)	0.8	4.77	0	4.42	9.19	0.28					
NSP (PCC & POP)	0.88	4.77	0	4.69	9.46	0.29					
FW (PCC)	0.9	4.77	0	4.76	9.53	0.29					
Existing demand	1	4.77	0	5.28	10.05	0.23					
MF (PCC) PR and FW (PCC & POP)	1.08	4.77	0	5.52	10.29	0.20					
FW (POP)	1.2	4.77	0	6.06	10.83	0.20					
NSP (POP)	1.25	4.77	0	6.28	11.05	0.25					
PR (POP)	1.35	4.77	0	6.74	11.51	0.21					
MF (POP)	1.45	4.77	0	7.19	11.96	0.20					
MF (PCC & POP)	1.52	5.09	0	7.53	12.62	0.23					

Conclusions

- Some elements of the system are particularly vulnerable and critical to the long-term performance of the system
- Resilience index values improved for small decrease in demand
- Water quality showed improvement for major reduction in demand.
- Increasing productive capacity is feasible up to about 35%
- Multistage capacity increase created flexibility which
 - allows for diversity in the short term
 - while trying to achieve long-term goals

- **Safe & SuRe**: towards a new paradigm for urban water management (EPSRC, 2013-2018)
- **iWIDGET**, Improved Water efficiency through ICT technologies for integrated supply-Demand side manaGEmenT, (FP7, 2012-2015)